v 4

GNN Scaling — next steps

Steve Farrell
NERSC, LBNL

Exa.TrX F2F, 2020-04-07

Wh

y should we use distributed training?

We said we'd use HPC + distributed training in our proposal ;)

It allows to more quickly train large models on large, complex datasets
We have large, complex graphs; a lot of potential intra-event parallelism
We can have large simulated datasets in HEP

Publishing research on large scale GNN training will be valuable to the

community

Parallelism strategies

P1{ b S
b D@8 s [T ey
P3M—'E> Iw[j%% P1 P2 P3
Data Parallelism Model Parallelism Layer Pipelining

Distribute network Partition by layer.

Distribute input

samples. structure (layers).

Fig. credit: Ben-Nun and Hoefler arXiv:1802.09941 3

NERSC

Data parallelism, synchronous Updates

Gradients are computed locally and summed \

across nodes. Updates are propagated to all

nodes \

o stable convergence
W

e scaling is not optimal because all nodes have

to wait for reduction to complete /

e global (effective) batch size grows with

ALL-REDUCE
SYNC. STEP

=

Synchronous SGD, decentralized
number of nodes

Parallelizing Graph Neural Networks

e Most deep learning literature on scaling training is on computer vision

applications
e Graph deep learning is much newer, so methods for scaling are much less

established
e Also, graph deep learning is a diverse set of applications, not all of which are

applicable to us
o E.g., FaceBook has (probably) the largest social network graph, but it'’s

essentially just one enormous graph [Shared Flsystem]
Rank 1 3. Load Edge :Rankz NW:t Checkpoint Rank 3
/(Trainer x / Trainer \ Trainer \
PyTorch-BigGraph: https:/arxiv.org/abs/1903.12287 (--. AR JI| .-. }

“scale to graphs with billions of nodes and trillions of edges”

Parameter Client Th read J [}‘arameter Client Thread } (Parameter Client Thread]

>
2. Swap partitions 1 '~<;

0

(
N
[

Sharded Parameter Server

[Sharded Partition Server

NERsC \&

Our GNN parallelism

e Naive domain parallelism
o Split into sectors, train on them independently

o You don’t need the whole detector context to find
tracks in a region

o (Minor) technical challenges in doing inference on
a whole event

o Small batch sizes are good for generalization
e Proper domain parallelism

o Break graph into sectors/partitions, but handle
the boundaries with communication

Other approaches
also under
consideration

o Definitely more difficult to implement

HPC scaling work with Cray BDC

e Through the Cray Big Data Center collaboration, we’re engaging with folks
from Cray and LBNL’s CRD to push on HPC scaling of GNNs (for tracking)

o Strong interest in scaling GNNs in PyTorch

o The basic plan is to do large scale training of GNNs in a larger Population
Based Training run

e Computational challenges
o Graphs with sparse connectivity => need sparse op support
o Variable sized graphs => need to handle load imbalance at scale
o Large scale training of GNNs => not much experience/intuition

e Using my PyTorch implementation of message-passing and “attention”
networks here: https://github.com/sparticlesteve/heptrkx-gnn-tracking

Single node performance [Saliya Ekanayake, LBNL]

e Compared speed and memory of dense and multiple sparse representations

Training Time (s) Training Time (s)
Dataset N | agnn dense agnn agnn

(tr/val) scatter add spspmm

Med 8 24.0416 9.63175 10.6389

(7/1)

Big 64 81.9128 102.74

(60/4)

Medium 8 (7/1)

e PyTorch-Geometric was the best of .
what we tested in terms of speed and L.
memory .

Big 64 (60/1)

| 1

eeeeeeeeeeeeeee

Scaling

e Distributed training scaling on OLCF and NERSC machines

e Scaling efficiency is not bad, actually, considering that it's
expected to be adversely affected by load imbalance

Cori CPU

10

(=]

80

60

Throughput

40

20

Number of workers

Throughput

1200

1000

800

600

400

200

Cori GPU

10 20 30 40 50 60
Number of workers

Training throughput [samples/s]
-

—e— Real data

| On Summit [Aris]

00000

Training instabilities

Occasionally suffering from spikey/unstable behavior in the training loss when training
distributed

—— Train

I've spent a bit of time digging into this °%1 ~— Validation
o Tracking gradient norms, weight norms ool Example
o Reducing graph size variance loss spike
03 in training

o Gets worse with larger models §
o Improved somewhat with layer norm, weight decay ,.

It was not fully solved, but | expect it’s related to the
interactions between, class weights (real vs. fake edges), °]

variable sample sizes and purities, optimizer momentum, S S
and gradient reductions as averages of averages.

Other things expected to help
o Stabilize training with auxiliary targets (e.g. predicting p+)
o Balance data sampling

10

Balanced data sampling

e Distribution of graph sizes leads to load

imbalance

e Solution in development, inspired by the
work done in Etalumis project:

https://arxiv.org/abs/1907.03382

O

O

e There can be effects on
convergence, which we’ll
need to study

O

o 2008
=

C=

Bin dataset into buckets of similar “size”

Sample batches from these buckets

It worked for Etalumis,

though

Per-Worker HEP-TRKX-GNN flops 2 Epochs, 16 ranks, batch-size = 1

4008,

3508

3008

2508

1508

1008

508B;

Training compute variability

%

Time (s)

Graph size variability

4000 A

3500 |

3000 1

2500 1

2000 1

1500 -

1000 A

500 1

5000
Nodes

6000

7000

4000

3000 -

2000 A

1000 -

0 e
10000

20000

30000
Edges

40000

50000

11

Outlook and next steps

This work stalled because of lack of time, but is now being picked back up

Our original plan was to use Cori KNL for a large scale study (and submit to something like
SC, IPDPS), but this has been abandoned

o KNL speed was factor ~8 slower than Haswell, would require considerable effort with
Intel to improve; decided not worth it

o Haswell system could still be useful, though it is in high demand nowadays

Current plan is to target a smaller system with GPUs (e.g. Cori-GPU) to wrap up the work
with Cray, and submit to a workshop

After that, there are more fun things to do
o Push further on scaling, run on Summit and upcoming Perimutter
o Smarter graph partitioning/parallelization

o Scale the newer methods explored by Nick and Daniel (and others)

12

